\square 18 CS 54

Fifth Semester B.E. Degree Examination, Jan./Feb. 2021 Automata Theory and Computability

Time: 3 hrs .
Max. Marks: 100
Note: Answer any FIVE full questions, choosing ONE full question from each module.

Module-1

1 a. Define the following with example:
i) String
ii) Language
iii) Alphabet
iv) Symbol
(04 Marks)
b. Design a DFSM to accept each of the following language:
i) $\mathrm{L}=\left\{\mathrm{w} \in\{\mathrm{a}, \mathrm{b}\}^{*}\right.$; w has all strings that ends with sub string abb$\}$
ii) $\mathrm{L}=\left\{\mathrm{w}\right.$; where $|\mathrm{w}| \bmod 3=0$ where $\left.\sum=\{\mathrm{a}\}\right\}$
iii) $L=\left\{w \in\{a, b\}^{*}\right.$ every a region in w is of even length. $\}$
(09 Marks)
c. Construct an equivalent DFA from the following given NFA using subset construction method. (Refer Fig.Q.1(c))
(07 Marks)

Fig.Q.1(c)

OR
2 a. Construct a minimum state automation equivalent to the FA given table

States	0	1
$\rightarrow \mathrm{q}_{0}$	q_{1}	q_{5}
q_{1}	q_{6}	q_{2}
q_{2}	q_{0}	q_{2}
q_{3}	q_{2}	q_{6}
q_{4}	q_{7}	q_{5}
q_{5}	q_{2}	q_{6}
q_{6}	q_{6}	q_{4}
q_{7}	q_{6}	q_{2}

(10 Marks)
b. Consider the following NFA with \in-moves construct on equivalent DFA.
(10 Marks)

1 of 2

Module-2

3 a. Define Regular expression. Write $R E$ for the following languages:
i) $\quad L=\left\{a^{n} b^{m} \mid m+n\right.$ is even $\}$
ii) $L=\left\{a^{n} b^{m} \mid m \geq 1 \mathrm{n} \geq 1 \mathrm{~nm} \geq 3\right\}$
iii) $L=\left\{a^{2 n} b^{2 m} \mid n \geq 0, m \geq 0\right\}$

> (10 Marks)
b. Construct an \in - NFA for the regular expression $0+01^{*}$
c. Construct on FA for the regular expression $10+(0+11) 0^{*} 1$

OR
4 a. State and prove pumping lemma theorem for regular languages.
b. Prove that $L=\left\{a^{p} \mid p\right.$ is a prime $\}$ is not a regular.
(08 Marks)
c. List out closure properties of regular sets.

Module-3

5 a. Define CFG. Write a CFG to specify
i) all string over $\{a, b\}$ that are even and odd palindromes.
ii) $\mathrm{L}=\left\{\mathrm{a}^{\mathrm{n}} \mathrm{b}^{2 \mathrm{n}}\right.$ over $\left.\Sigma=\{\mathrm{a}, \mathrm{b}\} \mathrm{n} \geq 1\right\}$
(10 Marks)
b. Write the procedure for removal of \in-productions. Simplify the following grammar.
$\mathrm{S} \rightarrow \mathrm{aA} \mid \mathrm{aBB}$
$\mathrm{A} \rightarrow \mathrm{aAA} \mid \in$
$\mathrm{B} \rightarrow \mathrm{bB} \mid \mathrm{bbC}$
$\mathrm{C} \rightarrow \mathrm{B}$
(10 Marks)
6 a. Define PDA. Design a PDA for the language that accepts the string with $\mathrm{n}_{\mathrm{a}}(\mathrm{w})<\mathrm{n}_{\mathrm{b}}(\mathrm{w})$ where $\mathrm{w} \in \mid(\mathrm{a}+\mathrm{b})^{*}$ and show the instantaneous description of the PDA on input abbab.
b. What is CNF and GNF? Convert the following grammar into GNF.
$\mathrm{S} \rightarrow \mathrm{AA} \mid \mathrm{a}$
$\mathrm{A} \rightarrow \mathrm{SS} \mid \mathrm{b}$
(10 Marks)
(10 Marks)

Module-4

7 a. With a neat diagram, explain variant of turning machine.
b. Construct a Turning machine that accept the language $0^{n}, 1^{n}$ where $\mathrm{n}>1$ and draw transition graph for Turning Machine.
(10 Marks)

OR

8 a. Define Turning Machine with its tuples.
(04 Marks)
b. Explain the working principle of Turning Machine with diagram. Design a Turing Machine to accept strings formed on $\{0,1\}$ and ending with 000 . Write transition diagram and ID for $\mathrm{w}=101000$.
(16 Marks)

Module-5

9 a. Explain restricted turing machines.
(08 Marks)
b. Explain the following with example:
i) Decidability
ii) Decidable languages
iii) Undecidable languages.
(12 Marks)
OR
10 Write a short note on:
a. Post correspondence problem
b. Halting problems in Turning Machine
c. Linear Bound Automation (LBA)
d. Classes of P and NP

